Image for Cardiovascular Physiology Concepts, Richard E Klabunde PhD

Cardiovascular Physiology Concepts

Richard E. Klabunde, PhD


Also Visit

Cardiovascular Physiology Concepts textbook cover

Click here for information on Cardiovascular Physiology Concepts, 2nd edition, a textbook published by Lippincott Williams & Wilkins (2012)

Cardiovascular Physiology Concepts textbook cover

Click here for information on Normal and Abnormal Blood Pressure, a textbook published by Richard E. Klabunde (2013)


Systemic Vascular Resistance

Systemic vascular resistance (SVR) refers to the resistance to blood flow offered by all of the systemic vasculature, excluding the pulmonary vasculature. This is sometimes referred as total peripheral resistance (TPR). SVR is therefore determined by factors that influence vascular resistance in individual vascular beds. Mechanisms that cause vasoconstriction increase SVR, and those mechanisms that cause vasodilation decrease SVR. Although SVR is primarily determined by changes in blood vessel diameters, changes in blood viscosity also affect SVR.

SVR can be calculated if cardiac output (CO), mean arterial pressure (MAP), and central venous pressure (CVP) are known.

SVR = (MAP - CVP) ÷ CO

Because CVP is normally near 0 mmHg, the calculation is sometimes simplified to:


The units for SVR are most commonly expressed as pressure (mmHg) divided by cardiac output (mL/min), or mmHg⋅min⋅mL-1, which is sometimes abbreviated as peripheral resistance units (PRU). Alternatively, SVR may be expressed in centimeter-gram-second (cgs) units as dynes⋅sec⋅cm-5, where 1 mmHg = 1,330 dynes/cm2 and flow (CO) is expressed as cm3/sec. The SVR value in PRU units can be converted to a corresponding value in cgs units by multiplying the PRU value by 80. Although the cgs units are less intuitive, many clinical and experimental studies still express SVR in those units.

It is very important to note that SVR can be calculated from MAP and CO, but it is not determined by either of these variables. A more accurate way to view this relationship is that at a given CO, if the MAP is very high, it is because SVR is high. Mathematically, SVR is the dependent variable in the above equations; however, physiologically, SVR and CO are normally the independent variables and MAP is the dependent variable (see Mean Arterial Pressure).

Revised 11/30/2014

DISCLAIMER: These materials are for educational purposes only, and are not a source of medical decision-making advice.