Heart Model
Cardiovascular Physiology Concepts Richard E. Klabunde, PhD

Cardiovascular Physiology Concepts 3e textbook cover Cardiovascular Physiology Concepts, 3rd edition textbook, Published by Wolters Kluwer (2021)

CNormal and Abnormal Blood Pressure, Physiology, Pathophysiology and Treatment book cover Normal and Abnormal Blood Pressure, published by Richard E. Klabunde (2013)

Vascular Tone

Vascular toneVascular tone refers to the degree of constriction experienced by a blood vessel relative to its maximally dilated state. All arterial and venous vessels under basal conditions exhibit some degree of smooth muscle contraction that determines the diameter, and hence tone, of the vessel.

Basal vascular tone differs among organs. Those organs having a large vasodilatory capacity (e.g., myocardium, skeletal muscle, skin, splanchnic circulation) have high vascular tone, whereas organs having relatively low vasodilatory capacity (e.g., cerebral and renal circulations) have low vascular tone.

Vascular tone is determined by many competing vasoconstrictor and vasodilator influences acting on the blood vessel. These influences can be separated into extrinsic factors that originate from outside the organ or tissue in which the blood vessel is located, and intrinsic factors that originate from the vessel itself or the surrounding tissue. The primary function of extrinsic factors is to regulate arterial blood pressure by altering systemic vascular resistance, whereas intrinsic mechanisms are important for local blood flow regulation within an organ. Vascular tone is determined by the balance of competing vasoconstrictor and vasodilator influences.

Extrinsic factors (neurohumoral) such as sympathetic nerves and circulating angiotensin II increase vascular tone (i.e., cause vasoconstriction); however, some circulating factors (e.g., atrial natriuretic peptide) decrease vascular tone. Intrinsic factors include:

The mechanisms by which the above influences either constrict or relax blood vessels involve various signal transduction mechanisms that ultimately influence the interaction between actin and myosin in the smooth muscle.

Revised 11/03/2023

Be sure to visit our sister site, CVPharmacology.com.

Why the Ads? CVphysiology.com is very popular with medical school students, physicians, educators, and others. We use the revenue from advertisements to offset the cost of hosting and maintaining this website. Having ads allows us to keep this website free for everyone.

Amazon Badge
Shop for Medical Books & Textbooks on Amazon